Widgets Tools

Herein, we present MenpoWidgets's basic widget tools that implement lower level widget functionalities, such as colour selection, zoom options, axes options, etc. These are the main ingredients in order to synthesize higher-level widget classes, such as the ones presented in Widgets Components.ipynb. All the widgets of this category live in menpowidgets.tools.

Below we present the functionalities of each one of them separately. Specifically we split this notebook in the following subsections:

  1. Basics
  2. Menpo Logo
  3. List Definition and Slicing
  4. Colour Selection
  5. Index Selection
  6. Zoom
  7. Image Options
  8. Line Options
  9. Marker Options
  10. Numbering Options
  11. Axes Options
  12. Legend Options
  13. Grid Options
  14. HOG, DSIFT, Daisy, LBP, IGO Options

1. Basics

As explained in the Introduction.ipynb notebook, all the widgets presented here are subclasses of menpo.abstract.MenpoWidget, thus they follow the same rules, which are:

  • They expect as input the initial options, as well as the rendering callback function.
  • They implement add_render_function(), remove_render_function(), replace_render_function() and call_render_function().
  • They implement set_widget_state(), which updates the widget state with a new set of options.
  • They implement style() which takes a set of options that change the style of the widget, such as font-related options, border-related options, etc.

Before presenting each widget separately, let's first import the things that are required.


In [1]:
from menpowidgets.tools import (LogoWidget, ListWidget, SlicingCommandWidget, ColourSelectionWidget, 
                                IndexButtonsWidget, IndexSliderWidget, ZoomOneScaleWidget, ZoomTwoScalesWidget, 
                                ImageOptionsWidget, LineOptionsWidget, MarkerOptionsWidget, NumberingOptionsWidget, 
                                AxesLimitsWidget, AxesTicksWidget, AxesOptionsWidget, LegendOptionsWidget, 
                                GridOptionsWidget, HOGOptionsWidget, DSIFTOptionsWidget, DaisyOptionsWidget, 
                                LBPOptionsWidget, IGOOptionsWidget)
from menpowidgets.style import map_styles_to_hex_colours

Let us also define a generic print function that will be the callback trigger when the selected_values trait of all the widgets changes.

The function must have a single argument, which will be a dict with the following keys:

  • 'name': The name of the trait that is monitored and triggers the callback. In the case of a MenpoWidget subclass, this is always 'selected_values'.
  • 'type': The type of event that happens on the trait. In the case of a MenpoWidget subclass, this is always 'change'.
  • 'new': The currently selected value attached to selected_values.
  • 'old': The previous value of selected_values.
  • 'owner': Pointer to the widget object.

Consequently, the selected values of a widget object (e.g. wid) can be retrieved in any of the following 3 equivalent ways:

  1. wid.selected_values
  2. change['new']
  3. change['owner'].selected_values

For this notebook, we choose the second way which is independent of the widget object.


In [2]:
from menpo.visualize import print_dynamic

def render_function(change):
    print(change['new'])

This is a simple widget that can be used for embedding an image into an ipywidgets widget are using the ipywidgets.Image class.


In [2]:
from menpowidgets.tools import LogoWidget
LogoWidget(style='danger')

3. List Definition and Slicing

MenpoWidgets has a widget for defining a list of numbers. The widget is smart enough to accept any valid python command, such as

'range(10)', '[1, 2, 3]', '10'

and complain about syntactic mistakes. It can be defined to expect either int or float numbers and has an optional example as guide.


In [4]:
list_cmd = [0, 1, 2]
    
wid = ListWidget(list_cmd, mode='int', description='List:', render_function=render_function, example_visible=True)
wid


[0, 1, 2, 3]
[20, 16, 11]

Note that you need to press Enter in order to pass a new value into the textbox. Also, try typing a wrong command, such as

'10, 20,,', '10, a, None'

to see the corresponding error messages.

The styling of the widget can be changed using the style() method.


In [5]:
wid.style(box_style='danger', font_size=15)

The state of the widget can be updated with the set_widget_state() method. Note that since allow_callback=False, nothing gets printed after running the command, even though selected_values is updated.


In [6]:
wid.set_widget_state([20, 16], allow_callback=False)

Similar to the list widget, MenpoWidgets has a widget for defining a command for slicing a list (or numpy.array). Commands can have any vald Python syntax, such as

':3:', '::2', '1:2:10', '-1::', '0, 3, 7', 'range(5)'

The widget gets as argument a dict with the initial slicing command as well as the length of the list.


In [7]:
# Initial options
slice_cmd = {'command': ':3', 
             'length': 10}

# Create widget
wid = SlicingCommandWidget(slice_cmd, description='Command:', render_function=render_function, 
                           example_visible=True, orientation='horizontal')

# Display widget
wid


[0, 1, 2, 3, 4, 5, 6]

Note that by defining a single int number, then an ipywidget.IntSlider appears that allows to select the index. Similarly, by inserting any slicing command with a constant step, then an ipywidgets.IntRangeSlider appears. The sliders are disabled when inserting a slicing command with non-constant step. The placement of the sliders with respect to the textbox is controlled by the orientation argument.

Additionally, similar to the ListWidget, the widget is smart enough to detect any syntactic errors and print a relevant message.

The styling of the widget can be changed as


In [8]:
wid.style(border_visible=True, border_style='dashed', font_weight='bold')

To update the widget's state, you need to pass in a new dict of options, as


In [9]:
wid.set_widget_state({'command': ':40', 'length': 40}, allow_callback=True)


[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]

4. Colour Selection

MenpoWidgets is using the standard Java colour picker defined in ipywidgets.ColorPicker. However, ColourSelectionWidget has the additional functionality to select colours for a set of objects. Thus the widget constructor gets a list of colours (either the colour name str or the RGB values), as well as the labels list that has the names of the objects.


In [10]:
wid = ColourSelectionWidget([[255, 38, 31], 'blue', 'green'], labels=['a', 'b', 'c'], 
                            render_function=render_function)

# Set styling
wid.style(box_style='warning', apply_to_all_style='info', label_colour='black', 
          label_background_colour=map_styles_to_hex_colours('info', background=True), font_weight='bold')

# Display widget
wid


[[255, 38, 31], 'blue', 'black']

The Apply to all button sets the currently selected colour to all the labels.

The colours can also be updated with the set_colours() function as


In [11]:
wid.set_colours(['red', 'orange', 'pink'], allow_callback=True)


['red', 'orange', 'pink']

In case there is only one label, defined either with a list of length 1 or by setting labels=None, then the drop-down menu to select object does not appear. For example, let's update the state of the widget:


In [12]:
wid.set_widget_state(['red'], None)


['red']

5. Index Selection

The following two widgets give the ability to select a single integer number from a specified range. Thus, they can be seen as index selectors. The user must pass in a dict that defines the minimum, maximum and step of the allowed range, as well as the initially selected index. Then the selected_values trait always keeps track of the selected index, thus it has int type.

An index selection widget, where the selector is an ipywidgets.IntSlider can be created as


In [13]:
# Initial options
index = {'min': 0, 
         'max': 100, 
         'step': 1, 
         'index': 10}

# Crete widget
wid = IndexSliderWidget(index, description='Index: ', render_function=render_function, continuous_update=False)

# Set styling
wid.style(box_style='danger', slider_handle_colour=map_styles_to_hex_colours('danger'), 
          slider_bar_colour=map_styles_to_hex_colours('danger'))

# Display widget
wid


43
17

As with all widgets, the state can be updated as:


In [14]:
wid.set_widget_state({'min': 10, 'max': 500, 'step': 2, 'index': 50}, allow_callback=True)


50

An index selection widget where the selection can be performed with -/+ (previous/next) buttons can be created as:


In [15]:
index = {'min': 0, 'max': 100, 'step': 1, 'index': 10}

wid = IndexButtonsWidget(index, render_function=render_function, loop_enabled=False, text_editable=True)
wid


11
12
13
14
15

Note that since text_editable is True, you can actually edit the index directly from the textbox. Additionally, by setting loop_enabled=True means that by pressing '+' when the textbox is at the last index, it takes you to the minimum index.

Let's update the styling of the widget:


In [16]:
wid.style(box_style='danger', plus_style='success', minus_style='danger', text_colour='blue', 
          text_background_colour=map_styles_to_hex_colours('info', background=True))

Let's also update its state with a new set of options:


In [17]:
wid.set_widget_state({'min': 20, 'max': 500, 'step': 2, 'index': 50}, loop_enabled=True, text_editable=True, 
                     allow_callback=True)


50

6. Zoom

There are two widgets for zooming into a figure. Both are using ipywidgets.FloatSLider and get as input a dict with the minimum and maximum values, the step of the slider(s) and the initial zoom value.

The first one defines a single zoom float, as


In [18]:
# Initial options
zoom_options = {'min': 0.1, 
                'max': 4., 
                'step': 0.05, 
                'zoom': 1.}

# Create widget
wid = ZoomOneScaleWidget(zoom_options, render_function=render_function)

# Set styling
wid.style(box_style='danger')
wid.zoom_slider.background_color = map_styles_to_hex_colours('info')
wid.zoom_slider.slider_color = map_styles_to_hex_colours('danger')

# Display widget
wid


1.75
2.95

and its state can be updated as:


In [19]:
wid.set_widget_state({'zoom': 0.5, 'min': 0., 'max': 4., 'step': 0.2}, allow_callback=True)


0.5

The second one defines two zoom values that are intended to control the height and width of a figure.


In [20]:
# Initial options
zoom_options = {'min': 0.1, 
                'max': 4., 
                'step': 0.1, 
                'zoom': [1., 1.], 
                'lock_aspect_ratio': False}

# Create widget
wid = ZoomTwoScalesWidget(zoom_options, render_function=render_function, continuous_update=True)

# Set styling
wid.style(box_style='danger')

# Display widget
wid


[2.9, 1.0]
[2.9, 0.5]
[5.3, 3.0]

Note that the sliders can be linkedd in order to preserve the aspect ratio of the figure. The state can be updated as:


In [21]:
zoom_options = {'min': 0.5, 'max': 10., 'step': 0.3, 'zoom': [2., 3.]}
wid.set_widget_state(zoom_options, allow_callback=True)


[2.0, 3.0]

7. Image Options

This is a widget for selecting options related to rendering an image. It defines the colourmap, the alpha value for transparency as well as the interpolation. Specifically:


In [22]:
# Initial options
image_options = {'alpha': 1., 
                 'interpolation': 'bilinear', 
                 'cmap_name': None}

# Create widget
wid = ImageOptionsWidget(image_options, render_function=render_function)

# Set styling
wid.style(box_style='success', padding=10, border_visible=True, border_radius=45)

# Display widget
wid


{'interpolation': 'bilinear', 'alpha': 0.35, 'cmap_name': None}
{'interpolation': 'none', 'alpha': 0.35, 'cmap_name': None}

The widget can be updated with a new dict of options as:


In [23]:
wid.set_widget_state({'alpha': 0.8, 'interpolation': 'none', 'cmap_name': 'gray'}, allow_callback=True)


{'interpolation': 'none', 'alpha': 0.8, 'cmap_name': None}

8. Line Options

The following widget allows the selection of options for rendering line objects. The initial options are passed in as a dict and control the width, style and colour of the lines. Note that a different colour can be defined for different objects using the labels argument.


In [24]:
# Initial options
line_options = {'render_lines': True, 
                'line_width': 1, 
                'line_colour': ['blue', 'red'], 
                'line_style': '-'}

# Create widget
wid = LineOptionsWidget(line_options, render_function=render_function, 
                        labels=['menpo', 'widgets'])

# Set styling
wid.style(box_style='danger', padding=6)

# Display widget
wid


{'render_lines': True, 'line_style': '-', 'line_colour': ['orange', 'red'], 'line_width': 1.0}
{'render_lines': True, 'line_style': '-', 'line_colour': ['orange', 'red'], 'line_width': 10.0}
{'render_lines': True, 'line_style': '--', 'line_colour': ['orange', 'red'], 'line_width': 10.0}

The Render lines tick box also controls the visibility of the rest of the options. So by updating the state with render_lines=False, the options disappear.


In [25]:
wid.set_widget_state({'render_lines': False, 'line_width': 5, 'line_colour': ['purple'], 'line_style': '--'}, 
                     allow_callback=True, labels=None)


{'render_lines': False, 'line_style': '--', 'line_colour': ['purple'], 'line_width': 5.0}

9. Marker Options

Similar to the LineOptionsWidget, this widget allows to selecting options for rendering markers. The options define the edge width, face colour, edge colour, style and size of the markers.


In [26]:
# Initial options
marker_options = {'render_markers': True, 
                  'marker_size': 20, 
                  'marker_face_colour': ['red', 'green'], 
                  'marker_edge_colour': ['black', 'blue'], 
                  'marker_style': 'o', 
                  'marker_edge_width': 1}

# Create widget
wid = MarkerOptionsWidget(marker_options, render_function=render_function, 
                          labels=['a', 'b'])

# Set styling
wid.style(box_style='info', padding=6)

# Display widget
wid


{'marker_edge_colour': ['black', 'blue'], 'marker_size': 200, 'render_markers': True, 'marker_style': 'o', 'marker_face_colour': ['red', 'green'], 'marker_edge_width': 1.0}
{'marker_edge_colour': ['black', 'blue'], 'marker_size': 200, 'render_markers': True, 'marker_style': '>', 'marker_face_colour': ['red', 'green'], 'marker_edge_width': 1.0}
{'marker_edge_colour': ['black', 'blue'], 'marker_size': 200, 'render_markers': True, 'marker_style': 'p', 'marker_face_colour': ['red', 'green'], 'marker_edge_width': 1.0}

In [27]:
wid.set_widget_state({'render_markers': True, 'marker_size': 20, 'marker_face_colour': ['red'], 
                     'marker_edge_colour': ['black'], 'marker_style': 'o', 'marker_edge_width': 1}, 
                     labels=None, allow_callback=True)


{'marker_edge_colour': ['black'], 'marker_size': 20, 'render_markers': True, 'marker_style': 'o', 'marker_face_colour': ['red'], 'marker_edge_width': 1.0}

10. Numbering Options

The NumberingOptionsWidget is used in case you want to render some numbers next to the plotted points.


In [28]:
# Initial options
numbers_options = {'render_numbering': True, 
                   'numbers_font_name': 'serif', 
                   'numbers_font_size': 10, 
                   'numbers_font_style': 'normal', 
                   'numbers_font_weight': 'normal', 
                   'numbers_font_colour': ['black'], 
                   'numbers_horizontal_align': 'center', 
                   'numbers_vertical_align': 'bottom'}

# Create widget
wid = NumberingOptionsWidget(numbers_options, render_function=render_function)

# Set styling
wid.style(box_style='success', border_visible=True, border_colour='black', border_style='solid', border_width=1, 
          border_radius=0, padding=10, margin=10)

# Display widget
wid


{'numbers_font_size': 10, 'render_numbering': False, 'numbers_font_weight': 'normal', 'numbers_horizontal_align': 'center', 'numbers_font_colour': 'black', 'numbers_vertical_align': 'bottom', 'numbers_font_name': 'serif', 'numbers_font_style': 'normal'}
{'numbers_font_size': 10, 'render_numbering': True, 'numbers_font_weight': 'normal', 'numbers_horizontal_align': 'center', 'numbers_font_colour': 'black', 'numbers_vertical_align': 'bottom', 'numbers_font_name': 'serif', 'numbers_font_style': 'normal'}

Of course the state of the widget can be updated as:


In [29]:
wid.set_widget_state({'render_numbering': True, 'numbers_font_name': 'serif', 'numbers_font_size': 10, 
                      'numbers_font_style': 'normal', 'numbers_font_weight': 'normal', 
                      'numbers_font_colour': ['green'], 'numbers_horizontal_align': 'center', 
                      'numbers_vertical_align': 'bottom'}, allow_callback=True)


{'numbers_font_size': 10, 'render_numbering': True, 'numbers_font_weight': 'normal', 'numbers_horizontal_align': 'center', 'numbers_font_colour': 'green', 'numbers_vertical_align': 'bottom', 'numbers_font_name': 'serif', 'numbers_font_style': 'normal'}

11. Axes Options

Before presenting the AxesOptionsWidget, let's first see two widgets that are ued as its basic components for selecting the axes limits as well as the axes ticks.

AxesLimitsWidget has 3 basic functions per axis:

  • auto: Allows matplotlib to automatically set the limits.
  • percentage: It expects a float that defines the percentage of padding to allow around the rendered object's region.
  • range: It expects two numbers that define the minimum and maximum values of the limits.

In [30]:
# Create widget
wid = AxesLimitsWidget(axes_x_limits=[0, 10], axes_y_limits=0.1, render_function=render_function)

# Set styling
wid.style(box_style='danger')

# Display widget
wid


{'y': 0.1, 'x': 0.0}
{'y': [0.0, 100.0], 'x': 0.0}
{'y': [0.0, 100.0], 'x': None}

Note that the percentage mode is accompanied by a ListWidget that expects a single float, whereas the range mode invokes a ListWidget that expects two float numbers. The state of the widget can be changed as:


In [31]:
wid.set_widget_state([-200, 200], None, allow_callback=True)


{'y': None, 'x': [-200, 200]}

On the other hand, AxesTicksWidget has two functionalities per axis:

  • auto: Allows matplotlib to automatically set the ticks.
  • list: Enables a ListWidget to select the ticks.

In [32]:
# Initial options
axes_ticks = {'x': [], 
              'y': [10., 20., 30.]}

# Create widget
wid = AxesTicksWidget(axes_ticks, render_function=render_function)

# St styling
wid.style(box_style='danger')

# Display widget
wid


{'y': [10.0, 20.0, 30.0], 'x': None}
{'y': [], 'x': None}

The state can be updated as:


In [33]:
wid.set_widget_state({'x': list(range(5)), 'y': None}, allow_callback=True)


{'y': None, 'x': [0, 1, 2, 3, 4]}

The AxesOptionsWidget involves the AxesLimitsWidget and AxesTicksWidget widgets and also allows the selection of font-related options. As always, the initial options are provided in a dict:


In [34]:
# Initial options
axes_options = {'render_axes': True, 
                'axes_font_name': 'serif', 
                'axes_font_size': 10, 
                'axes_font_style': 'normal', 
                'axes_font_weight': 'normal', 
                'axes_x_limits': None, 
                'axes_y_limits': None, 
                'axes_x_ticks': [0, 100], 
                'axes_y_ticks': None}

# Create widget
wid = AxesOptionsWidget(axes_options, render_function=render_function)

# Set styling
wid.style(box_style='warning', padding=6, border_visible=True, border_colour=map_styles_to_hex_colours('warning'))

# Display widget
wid


{'axes_font_name': 'serif', 'axes_font_size': 100, 'axes_font_weight': 'normal', 'axes_y_limits': None, 'axes_x_limits': None, 'render_axes': True, 'axes_font_style': 'normal', 'axes_y_ticks': None, 'axes_x_ticks': [0, 100]}
{'axes_font_name': 'serif', 'axes_font_size': 100, 'axes_font_weight': 'normal', 'axes_y_limits': None, 'axes_x_limits': None, 'render_axes': False, 'axes_font_style': 'normal', 'axes_y_ticks': None, 'axes_x_ticks': [0, 100]}

The state of the widget can be updated as:


In [35]:
axes_options = {'render_axes': True, 'axes_font_name': 'serif', 
                'axes_font_size': 10, 'axes_font_style': 'normal', 'axes_font_weight': 'normal', 
                'axes_x_limits': [0., 0.05], 'axes_y_limits': 0.1, 'axes_x_ticks': [0, 100], 'axes_y_ticks': None}
wid.set_widget_state(axes_options, allow_callback=True)


{'axes_font_name': 'serif', 'axes_font_size': 10, 'axes_font_weight': 'normal', 'axes_y_limits': 0.1, 'axes_x_limits': [0.0, 0.05], 'render_axes': True, 'axes_font_style': 'normal', 'axes_y_ticks': None, 'axes_x_ticks': [0, 100]}

12. Legend Options

LegendOptionsWidget allows to control the (many) options of renderinf the legend of a figure.


In [36]:
# Initial options
legend_options = {'render_legend': True,
                  'legend_title': '',
                  'legend_font_name': 'serif',
                  'legend_font_style': 'normal',
                  'legend_font_size': 10,
                  'legend_font_weight': 'normal',
                  'legend_marker_scale': 1.,
                  'legend_location': 2,
                  'legend_bbox_to_anchor': (1.05, 1.),
                  'legend_border_axes_pad': 1.,
                  'legend_n_columns': 1,
                  'legend_horizontal_spacing': 1.,
                  'legend_vertical_spacing': 1.,
                  'legend_border': True,
                  'legend_border_padding': 0.5,
                  'legend_shadow': False,
                  'legend_rounded_corners': True}

# Create widget
wid = LegendOptionsWidget(legend_options, render_function=render_function)

# Set styling
wid.style(border_visible=True, font_size=15)

# Display widget
wid

In [37]:
legend_options = {'render_legend': True, 'legend_title': 'asd', 'legend_font_name': 'sans-serif', 
                  'legend_font_style': 'normal', 'legend_font_size': 60, 'legend_font_weight': 'normal',
                  'legend_marker_scale': 2., 'legend_location': 7, 'legend_bbox_to_anchor': (1.05, 1.),
                  'legend_border_axes_pad': 1., 'legend_n_columns': 2, 'legend_horizontal_spacing': 3.,
                  'legend_vertical_spacing': 7., 'legend_border': False,
                  'legend_border_padding': 0.5, 'legend_shadow': True, 'legend_rounded_corners': True}
wid.set_widget_state(legend_options, allow_callback=True)


{'legend_font_size': 60, 'legend_font_weight': 'normal', 'legend_font_style': 'normal', 'legend_vertical_spacing': 7.0, 'legend_font_name': 'sans-serif', 'legend_marker_scale': 2.0, 'legend_shadow': True, 'legend_border': False, 'legend_border_axes_pad': 1.0, 'legend_title': 'asd', 'render_legend': True, 'legend_bbox_to_anchor': (1.05, 1.0), 'legend_horizontal_spacing': 3.0, 'legend_location': 7, 'legend_n_columns': 2, 'legend_rounded_corners': True, 'legend_border_padding': 0.5}

13. Grid Options

The following simple widget controls the rendering of the grid lines of a plot, their style and width.


In [38]:
# Initial options
grid_options = {'render_grid': True, 
                'grid_line_width': 1, 
                'grid_line_style': '-'}

# Create widget
wid = GridOptionsWidget(grid_options, render_function=render_function)

# Set styling
wid.style(box_style='warning')

# Display widget
wid


{'grid_line_width': 1.0, 'render_grid': True, 'grid_line_style': '-.'}
{'grid_line_width': 10.0, 'render_grid': True, 'grid_line_style': '-.'}

In [39]:
wid.set_widget_state({'render_grid': True, 'grid_line_width': 10, 'grid_line_style': ':'})


{'grid_line_width': 10.0, 'render_grid': True, 'grid_line_style': ':'}

14. HOG, DSIFT, Daisy, LBP, IGO Options

The following widgets allow to select options regarding HOG, DSIFT, Daisy, LBP and IGO features.


In [40]:
# Initial options
hog_options = {'mode': 'dense',
               'algorithm': 'dalaltriggs',
               'num_bins': 9,
               'cell_size': 8,
               'block_size': 2,
               'signed_gradient': True,
               'l2_norm_clip': 0.2,
               'window_height': 1,
               'window_width': 1,
               'window_unit': 'blocks',
               'window_step_vertical': 1,
               'window_step_horizontal': 1,
               'window_step_unit': 'pixels',
               'padding': True}

# Create widget
wid = HOGOptionsWidget(hog_options, render_function=render_function)

# Set styling
wid.style('info')

# Display widget
wid


{'mode': 'dense', 'window_unit': 'blocks', 'l2_norm_clip': 0.2, 'window_height': 1, 'window_width': 1, 'padding': False, 'signed_gradient': True, 'window_step_unit': 'pixels', 'num_bins': 9, 'window_step_vertical': 1, 'cell_size': 8, 'block_size': 2, 'algorithm': 'dalaltriggs', 'window_step_horizontal': 1}

In [41]:
# Initial options
dsift_options = {'window_step_horizontal': 1,
                 'window_step_vertical': 1,
                 'num_bins_horizontal': 2,
                 'num_bins_vertical': 2,
                 'num_or_bins': 9,
                 'cell_size_horizontal': 6,
                 'cell_size_vertical': 6,
                 'fast': True}

# Create widget
wid = DSIFTOptionsWidget(dsift_options, render_function=render_function)

# Set styling
wid.style('success')

# Display widget
wid


{'cell_size_horizontal': 6, 'cell_size_vertical': 6, 'num_or_bins': 9, 'window_step_vertical': 1, 'fast': False, 'num_bins_horizontal': 2, 'window_step_horizontal': 1, 'num_bins_vertical': 2}

In [42]:
# Initial options
daisy_options = {'step': 1,
                 'radius': 15,
                 'rings': 2,
                 'histograms': 2,
                 'orientations': 8,
                 'normalization': 'l1',
                 'sigmas': None,
                 'ring_radii': None}
   
# Create widget
wid = DaisyOptionsWidget(daisy_options, render_function=render_function)

# Set styling
wid.style('danger')

# Display widget
wid


{'step': 1, 'rings': 2, 'sigmas': None, 'radius': 15, 'normalization': 'daisy', 'histograms': 2, 'orientations': 8, 'ring_radii': None}

In [43]:
# Initial options
lbp_options = {'radius': list(range(1, 5)),
               'samples': [8] * 4,
               'mapping_type': 'u2',
               'window_step_vertical': 1,
               'window_step_horizontal': 1,
               'window_step_unit': 'pixels',
               'padding': True}
    
# Create widget
wid = LBPOptionsWidget(lbp_options, render_function=render_function)

# Set styling
wid.style(box_style='warning')

# Display widget
wid


{'samples': [8, 8, 8, 8], 'window_step_unit': 'pixels', 'padding': True, 'window_step_vertical': 1, 'mapping_type': 'ri', 'radius': [1, 2, 3, 4], 'window_step_horizontal': 1}

In [44]:
wid = IGOOptionsWidget({'double_angles': True}, render_function=render_function)
wid


{'double_angles': False}